1.gif (19778 bytes)

"El Sol no brilla sobre nosotros, sino dentro de nosotros" (John Muir)

La energía solar

    

Una energía garantizada para los próximos 6.000 millones de años

El Sol, fuente de vida y origen de las demás formas de energía que el hombre ha utilizado desde los albores de la Historia, puede satisfacer todas nuestras necesidades, si aprendemos cómo aprovechar de forma racional la luz que continuamente derrama sobre el planeta. Ha brillado en el cielo desde hace unos cinco mil millones de años, y se calcula que todavía no ha llegado ni a la mitad de su existencia. Durante el presente año, el Sol arrojará sobre la Tierra cuatro mil veces más energía que la que vamos a consumir.

El Sol es una masa de materia gaseosa caliente que irradia a una temperatura efectiva de unos 6000ºC. El sol esta a una distancia de 149490000 kilómetros de la Tierra, y la constante solar, esto es, la intensidad media de radiación medida fuera de la atmósfera en un plano normal la radiación es aproximadamente 1.94 cal/min. cm3.

Radiación que llega a la Tierra.

La intensidad de la radiación solar que llega a la superficie de las Tierra se reduce por varios factores variables, entre ellos, la absorción de la radiación, en intervalos de longitud de onda específicos, por los gases de la atmósfera, dioxido de carbono, ozono, etc., por el vapor de agua, por la difusión atmosférica por la partículas de polvo, moléculas y gotitas de agua, por reflexión de las nubes y por la inclinación del plano que recibe la radiación respecto de la posición normal de la radiación.

 

Localidad y sus latitudes

Diciembre

Kilocal/m2

Junio

Kilocal/m2

Promedio anual

San Juan, Puerto Rico, 18º N

4.177

5.425

5.262

El Paso, Texas, 32º N

3.274

7.408

5.525

Fresno, California, 37º N

1.655

7.106

4.502

Madison, Wisconsi, 43º N

1.220

5.398

3.309

Seattle, Washington, 47º N

624

6.184

3.146

Londres, Inglaterra, 52º N

488

4.720

2.387

Mesina, Sudáfrica, 22º S

6.293

3.635

5.086

Buenos Aires, Argentina, 35º S

7.188

2.075

4.286

Mt. Stronlo, Australia, 35º S

6.374

2.048

4..258

 

La intensidad de la radiación medida en la superficie de la Tierra varia de 1.6 a 0.

El total de la energía solar que llega a la Tierra es enorme. Lo EE.UU., por ejemplo, reciben anualmente alrededor de 1500 veces sus demandas de energía total. En un día de sol de verano, la energía que llega al tejado de una casa de tipo medio seria mas que suficiente para satisfacer las necesidades de energía de esa casa por 24 hora. En la tabla 1 se dan valores típicos de la radiación que se recibe en la superficie de la Tierra. La figura 2, muestra la cantidad de radiación recibida en superficies orientadas de modo diferente en días claros (latitud 42°N).

La distribución espectral de la radiación en la superficie de la tierra ha sido extensamente estudiada y se ha propuesto una serie de curvas a modo de patrón, para diferentes masa de aire. la masa de aire , m, se define como la radiación y el espesor cuando el sol esta en el cenit y el observador a nivel del mar. la curva de trazos en la figura 1 muestra la curva patrón propuesta por una masa de aire igual a 2.

la tabla II indica la distribución de energía transmitida en tres intervalos de longitud de onda, para diversas masas de aire, m, y se basa en la constante solar de 1.896 cal/min. cm.

 

Intervalo de longitud de onda, m

Energía transmitida, cal./(min.)(cm2)

 

m = 0

1

2

3

4

5

Ultravioleta, 0.29-0.40

0.136

0.057

0.029

0.014

0.008

0.004

Visible, 0.40-0.70

0.774

0.601

0.470

0.371

0.295

0.235

Infrarrojo, por encima de 0.70

0.986

0.672

0.561

0.486

0.427

0.377

Totales

Calorías por minuto, por cm2

1.896

1.330

1.060

0.871

0.730

0.616

 


    España, por su privilegiada situación y climatología, se ve particularmente favorecida respecto al resto de los países de Europa, ya que sobre cada metro cuadrado de su suelo inciden al año unos 1.500 kilovatios-hora de energía. Esta energía puede aprovecharse directamente, o bien ser convertida en otras formas útiles como, por ejemplo, en electricidad.

    No sería racional no intentar aprovechar, por todos los medios técnicamente posibles, esta fuente energética gratuita, limpia e inagotable, que puede liberarnos definitivamente de la dependencia del petróleo o de otras alternativas poco seguras o, simplemente, contaminantes como las centrales nucleares y las térmicas.

[Colectores solares]

    Es preciso, no obstante, señalar que existen algunos problemas que debemos afrontar y superar. Aparte de las dificultades que una política energética solar avanzada conllevaría por sí misma, hay que tener en cuenta que esta energía está sometida a continuas fluctuaciones y a variaciones más o menos bruscas. Así, por ejemplo, la radiación solar es menor en invierno, precisamente cuando más la necesitamos.

    Es de vital importancia proseguir con el desarrollo de la incipiente tecnología de captación, acumulación y distribución de la energía solar, para conseguir las condiciones que la hagan definitivamente competitiva, a escala planetaria.

¿Qué se puede hacer con la energía solar?

    Básicamente, recogiendo de forma adecuada la radiación solar, podemos obtener calor y electricidad.

    El calor se logra mediante los colectores térmicos, y la electricidad, a través de los llamados módulos fotovoltaicos. Ambos procesos nada tienen que ver entre sí, ni en cuanto a su tecnología ni en su aplicación.

solar1.gif (9069 bytes)

     Hablemos primero de los sistemas de aprovechamiento térmico. El calor recogido en los colectores puede destinarse a satisfacer numerosas necesidades. Por ejemplo, se puede obtener agua caliente para consumo doméstico o industrial, o bien para dar calefacción a nuestros hogares, hoteles, colegios, fábricas, etc. Incluso podemos climatizar las piscinas y permitir el baño durante gran parte del año.
     También, y aunque pueda parecer extraño, otra de las más prometedoras aplicaciones del calor solar será la refrigeración durante las épocas cálidas .precisamente cuando más soleamiento hay. En efecto, para obtener frío hace falta disponer de un «foco cálido», el cual puede perfectamente tener su origen en unos colectores solares instalados en el tejado o azotea. En los países árabes ya funcionan acondicionadores de aire que utilizan eficazmente la energía solar.
     Las aplicaciones agrícolas son muy amplias. Con invernaderos solares pueden obtenerse mayores y más tempranas cosechas; los secaderos agrícolas consumen mucha menos energía si se combinan con un sistema solar, y, por citar otro ejemplo, pueden funcionar plantas de purificación o desalinización de aguas sin consumir ningún tipo de combustible.
     Las «células solares», dispuestas en paneles solares, ya producían electricidad en los primeros satélites espaciales. Actualmente se perfilan como la solución definitiva al problema de la electrificación rural, con clara ventaja sobre otras alternativas, pues, al carecer los paneles de partes móviles, resultan totalmente inalterables al paso del tiempo, no contaminan ni producen ningún ruido en absoluto, no consumen combustible y no necesitan mantenimiento. Además, y aunque con menos rendimiento, funcionan también en días nublados, puesto que captan la luz que se filtra a través de las nubes.
    La electricidad que así se obtiene puede usarse de manera directa (por ejemplo para sacar agua de un pozo o para regar, mediante un motor eléctrico), o bien ser almacenada en acumuladores para usarse en las horas nocturnas. Incluso es posible inyectar la electricidad sobrante a la red general, obteniendo un importante beneficio.
    Si se consigue que el precio de las células solares siga disminuyendo, iniciándose su fabricación a gran escala, es muy probable que, para primeros de siglo, una buena parte de la electricidad consumida en los países ricos en sol tenga su origen en la conversión fotovoltaica.

 solar2.gif (6727 bytes)

    La energía solar puede ser perfectamente complementada con otras energías convencionales, para evitar la necesidad de grandes y costosos sistemas de acumulación. Así, una casa bien aislada puede disponer de agua caliente y calefacción solares, con el apoyo de un sistema convencional a gas o eléctrico que únicamente funcionaría en los periodos sin sol. El coste de la «factura de la luz» sería sólo una fracción del que alcanzaría sin la existencia de la instalación solar.


volver principal

1